71 research outputs found

    Tissue metabolic changes drive cytokine responses to Mycobacterium tuberculosis

    Get PDF
    Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis (Mtb). Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms (SNPs) that were trans-acting for in vitro cytokine responses to Mtb stimulation, including glutathione and pyrimidine metabolism genes that alter production of Th1 and Th17 cytokines. Our findings identify novel therapeutic targets in host metabolism that may shape protective immunity to tuberculosis

    Automatically extracting functionally equivalent proteins from SwissProt

    Get PDF
    In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and recommend changes to the UniProtKB/Swiss-Prot format, which would facilitate text-mining of UniProtKB/Swiss-Prot

    Syntenator: Multiple gene order alignments with a gene-specific scoring function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level.</p> <p>Results</p> <p>We present a novel approach to identify regions of conserved synteny across multiple genomes. Syntenator represents genomes and alignments thereof as partial order graphs (POGs). These POGs are aligned by a dynamic programming approach employing a gene-specific scoring function. The scoring function reflects the level of protein sequence similarity for each possible gene pair. Our method consistently defines larger homologous regions in pairwise gene order alignments than nucleotide-level comparisons. Our method is superior to methods that work on predefined homology gene sets (as implemented in Blockfinder). Syntenator successfully reproduces 80% of the EnsEMBL man-mouse conserved syntenic blocks. The full potential of our method becomes visible by comparing remotely related genomes and multiple genomes. Gene order alignments potentially resolve up to 75% of the EnsEMBL 1:many orthology relations and 27% of the many:many orthology relations.</p> <p>Conclusion</p> <p>We propose Syntenator as a software solution to reliably infer conserved syntenies among distantly related genomes. The software is available from <url>http://www2.tuebingen.mpg.de/abt4/plone</url>.</p

    Predicting functional associations from metabolism using bi-partite network algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reconstructions contain detailed information about metabolic enzymes and their reactants and products. These networks can be used to infer functional associations between metabolic enzymes. Many methods are based on the number of metabolites shared by two enzymes, or the shortest path between two enzymes. Metabolite sharing can miss associations between non-consecutive enzymes in a serial pathway, and shortest-path algorithms are sensitive to high-degree metabolites such as water and ATP that create connections between enzymes with little functional similarity.</p> <p>Results</p> <p>We present new, fast methods to infer functional associations in metabolic networks. A local method, the degree-corrected Poisson score, is based only on the metabolites shared by two enzymes, but uses the known metabolite degree distribution. A global method, based on graph diffusion kernels, predicts associations between enzymes that do not share metabolites. Both methods are robust to high-degree metabolites. They out-perform previous methods in predicting shared Gene Ontology (GO) annotations and in predicting experimentally observed synthetic lethal genetic interactions. Including cellular compartment information improves GO annotation predictions but degrades synthetic lethal interaction prediction. These new methods perform nearly as well as computationally demanding methods based on flux balance analysis.</p> <p>Conclusions</p> <p>We present fast, accurate methods to predict functional associations from metabolic networks. Biological significance is demonstrated by identifying enzymes whose strong metabolic correlations are missed by conventional annotations in GO, most often enzymes involved in transport vs. synthesis of the same metabolite or other enzyme pairs that share a metabolite but are separated by conventional pathway boundaries. More generally, the methods described here may be valuable for analyzing other types of networks with long-tailed degree distributions and high-degree hubs.</p

    Understanding the Adaptive Growth Strategy of Lactobacillus plantarum by In Silico Optimisation

    Get PDF
    In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy

    Protein Complex Evolution Does Not Involve Extensive Network Rewiring

    Get PDF
    The formation of proteins into stable protein complexes plays a fundamental role in the operation of the cell. The study of the degree of evolutionary conservation of protein complexes between species and the evolution of protein-protein interactions has been hampered by lack of comprehensive coverage of the high-throughput (HTP) technologies that measure the interactome. We show that new high-throughput datasets on protein co-purification in yeast have a substantially lower false negative rate than previous datasets when compared to known complexes. These datasets are therefore more suitable to estimate the conservation of protein complex membership than hitherto possible. We perform comparative genomics between curated protein complexes from human and the HTP data in Saccharomyces cerevisiae to study the evolution of co-complex memberships. This analysis revealed that out of the 5,960 protein pairs that are part of the same complex in human, 2,216 are absent because both proteins lack an ortholog in S. cerevisiae, while for 1,828 the co-complex membership is disrupted because one of the two proteins lacks an ortholog. For the remaining 1,916 protein pairs, only 10% were never co-purified in the large-scale experiments. This implies a conservation level of co-complex membership of 90% when the genes coding for the protein pairs that participate in the same protein complex are also conserved. We conclude that the evolutionary dynamics of protein complexes are, by and large, not the result of network rewiring (i.e. acquisition or loss of co-complex memberships), but mainly due to genomic acquisition or loss of genes coding for subunits. We thus reveal evidence for the tight interrelation of genomic and network evolution

    Enrichment of homologs in insignificant BLAST hits by co-complex network alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous.</p> <p>Results</p> <p>Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs.</p> <p>Conclusions</p> <p>Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.</p

    Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    Get PDF
    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species
    • …
    corecore